2. OŽIVENÍ POJÍZDNÉHO ROBOTA

METODICKÉ POKYNY PRO UČITELE

K čemu aktivita slouží?

Žáci se v této aktivitě:

- seznámí s pojízdným robotem a jeho řízením,
- seznámí s programovým blokem pro řízení dvou motorů,
- naučí měnit parametry pohybu robota,
- naučí analyzovat, testovat a upravovat krátký program,
- naučí ovlivnit vzdálenost, kterou robot ujede.

Přepokládaný rozsah aktivity

2 x 45 minut

Jak při řešení aktivity postupovat?

- Zajistěte, aby žáci následovali pokyny uvedené v učebnici a řešili úlohy v uvedeném sledu (přeskočení některé části může mít za následek nejasnosti při řešení některé z dalších aktivit).
- Pro rychlejší žáky jsou připraveny náročnější, rozšiřující úlohy.
- Pokud tato hodina bezprostředně navazuje na úvodní hodinu (1. Stavíme robota), je potřeba razantně ukončit práci žáků na vylepšení konstrukce, aby se plně věnovali práci na těchto aktivitách.

Co si pro řešení aktivity připravit?

- Seznamte se s aktivitami, které budou žáci řešit.
- Pro testování funkčnosti vytvořených programů si ve třídě vyčleňte prostor o velikosti alespoň 3 x 3 metry.
- Pro řešení některých úkolů s ujetím přesné vzdálenosti je vhodné mít připravené měřítko (pravítko) dlouhé alespoň 30 cm. Stejný účel může splnit také papír formátu A4, jehož delší strana měří 297 mm.

Popis částí aktivit, předpokládané řešení

2.1 Připojení motorů

V případě problémů nastalých při řešení první aktivity ověřte, že žáci využívají správné porty (výstupní porty označené A–D).

2.2 Začínáme – první program

Prostřednictvím odkazu vpravo si žáci stáhnou první program.

2.3 Spuštění programu

Ověření úspěšného propojení robota s počítačem pomocí USB kabelu.

2.3.1 Kontrola připojení

V případě problémů s připojením žáky upozorněte, že tato sekce je pro ně vhodným ověřením funkčnosti připojení řídicí jednotky k počítači.

Obrázek 1 – Sekce umožňující kontrolu připojení včetně připojených modulů a senzorů.

2.3.2 Když se připojení nezdařilo

Pokud bylo připojení neúspěšné, v této sekci žáci naleznou radu, co zkontrolovat a jak postupovat.

Obrázek 2 – Popis sekce pro správu připojených jednotek.

2.4 Učíme robota jezdit

)

2.4.1 Úkol

Otázka: Co se stane, pokud motory připojíte k daným portům dle obrázku, program nahrajete do řídicí jednotky a spustíte?

Řešení: Robot po spuštění programu vykoná 4 otáčky motorů A a D rychlostí 75 %.

Obrázek 3 – Parametry ovlivňující aktuální chování robota.

2.4.2 Úkol

Otázky: V čem se tento program liší od předchozího? Jaký pohyb robot vykoná nyní?

Řešení: Motory robota se oproti předchozímu úkolu otáčí v opačném směru. Žáci se zde naučí měnit směr pohybu motorů.

Obrázek 4 – Znaménko mínus způsobí u nastavení rychlosti opačné otáčení motorů.

2.4.3 Úkol

Otázka: Co musíte v programu změnit, aby robot ujel pouze polovinu této vzdálenosti? Vymyslete řešení a otestujte ho.

Řešení: Úkol má dvě možná řešení. Aby robot ujel poloviční vzdálenost, musí se v programu změnit doba otáčení motorů na polovinu (ze čtyř vteřin na dvě). Druhou možností je úprava rychlosti na polovinu. Robot sice stále pojede 4 vteřiny, ale poloviční rychlostí ujede polovinu dráhy.

Obrázek 5 – Možná řešení úkolu č. 2.4.3.

2.4.4 Hádanka 🔯

Otázka: Nyní pro vás máme jednu hádanku. Proč se robot při spuštění tohoto programu nerozjede?

Řešení: Žáci by si měli všimnout, že se nyní nepoužívá režim řízení motoru pomocí otáček, ale pomocí úhlových stupňů. Motory se ale dle programu mají otočit pouze o jeden stupeň, proto jejich pohyb není ani možné postřehnout.

2.5 Souhrnný úkol – střídáme rychlosti

Zadání: Vytvořte program, pomocí kterého robot ujede vzdálenost 4 otáček svých kol rychlostí 50 % a poté na dvě otáčky zrychlí na 100 %.

Řešení: K řešení jsou potřeba dva bloky pro ovládání motorů, každý s rozdílným nastavením (viz obrázek 7).

Obrázek 7 – Správné řešení souhrnného úkolu.

2.6 Učíme robota vzdálenost

Úkoly zaměřené na správné určování ujetých vzdáleností.

2.6.1 Úkol

Otázky: Jaký je rozdíl mezi programy na obrázku? Pomocí kterého programu robot ujede delší vzdálenost?

Řešení: Rozdíl mezi programy není žádný. V prvním případě se vykoná jedna otáčka motoru, ve druhém případě se motor otočí o 360°, tzn. také o jednu otáčku. Pokaždé tedy robot ujede stejnou vzdálenost.

Obrázek 8 – Parametry umožňující dosáhnout totožného výsledku.

2.6.2 Úkol

Otázky: Ve kterém případě robot urazí delší vzdálenost? Dokážete najít odpověď jen na základě obrázku? Jaký je rozdíl mezi oběma programy?

Řešení: V obou případech robot urazí totožnou vzdálenost. V prvním případě ale rychlostí 50 %, ve druhém případě rychlostí 100 %. Změna rychlosti nemá na ujetou vzdálenost vliv.

Obrázek 9 – Zásadní parametry, na které se musí žáci při řešení úkolu zaměřit.

2.6.3 Hádanka 🔯

Otázky: Kolik centimetrů robot ujede, pokud spustíme program na obrázku? Jakým způsobem by se to dalo zjistit i bez jeho spuštění?

Řešení: Obvod kola stavebnice EV3 je zhruba 17,5 cm. Ujetím dvou otáček tak robot urazí dráhu zhruba 35 cm. Žáci to mohou zjistit i bez testování. Stačí si změřit průměr kola a z něj spočítat jeho obvod. Snadno tak odvodí, jak dlouhou dráhu robot při vykonání dvou otáček ujede.

Obrázek 10 – Testovaný program z učebnice.

2.6.4 Hádanka 🔯

Otázka: Jak zajistíte, aby stejnou vzdálenost jako v předchozí hádance ujel robot zadáním ve stupních?

Řešení: Jedna otáčka motoru je rovna 360°. Aby robot ujel dvě otáčky, musíme nastavit otočení obou motorů o 720° (viz obrázek 11).

Obrázek 11 – Řešení hádanky 2.6.4.

2.6.5 Úkol

Zadání: Vytvořte program, pomocí kterého robot ujede co nejpřesněji 30 centimetrů.

Upozornění: Pro zadání hodnoty u programového bloku je třeba v zápisu použít desetinou tečku (viz obrázek 12).

Řešení: Pokud pro řešení použijeme režim měření v otáčkách motoru, je třeba, aby se motory otočily zhruba o 1,7 otáčky.

Obrázek 12 – Možné řešení úkolu 2.6.5.

2.7 Náročnější úkol

Zadání: Vytvořte program, pomocí kterého robot ujede vzdálenost 5 otáček kol, poté se otočí o 90° vpravo a následně ujede dalších 5 otáček.

Poznámka: Jedná se o poměrně náročný úkol, který má ovšem jasný cíl. Chceme na něm žákům ukázat, že pro vyřešení náročných úkolů je dobré si problém rozdělit na menší a snáze řešitelné části. Nejprve by tedy měli řešit pohyb robota vpřed, následně přejít k řešení způsobu zatáčení a nakonec přidat znovu pohyb vpřed. Při problémech by jim tento postup měl vyučující doporučit a představit. Chceme také, aby žáci přicházeli na vlastní způsoby zatáčení. Existuje totiž několik způsobů, jak zatočit o 90°.

Možná řešení: Otočení o 90° vpravo lze po ujetí 5 otáček řešit několika způsoby:

1. Pravý motor stojí a otáčí se pouze levý, dokud nedosáhne požadovaného natočení.

2. Otáčí se oba motory současně, zatímco robot stojí na místě. Pravý motor se otáčí čelem vzad a levý směrem vpřed, dokud nedosáhneme požadovaného natočení.

Řada žáků využije pro natáčení nejspíše tažítko (parametr
Steering u bloku Move Steering). Při jeho využití je ovšem náročnější najít správnou hodnotu, aby robot zatočil skutečně o 90°.

Úloha vyžaduje pečlivou přípravu ze strany učitele. Správné zatočení je závislé na zvolené rychlosti otáčení motorů a také na použitém režimu programového bloku.

2.8 Náročnější úkoly pro rychlé žáky

2.8.1 Úkol 🔯

Zadání: Zařiďte, aby robot ujel 15 cm, pak na 3 vteřiny zastavil, pak se znovu rozjel a ujel 15 cm.

Řešení: Vzdálenost 15 cm odpovídá zhruba 85 % jedné otáčky. Pro oddálení vykonání druhé části pohybu je potřeba použít blok **Wait** a následně první krok zopakovat.

Obrázek 13 – Správné řešení úkolu.

2.8.2 Úkol 🔯

Zadání: Zařiďte, aby robot ujel 30 cm, následně zastavil a zpět na počáteční pozici zacouval.

Řešení: Pro ujetí 30 cm je potřeba urazit zhruba 1,7 otáčky. Pro zacouvání zpět postačí změnit směr otáčení motoru a vykonat stejně dlouhý pohyb. Pro lepší plynulost programu je možné mezi oba bloky přidat blok **Wait** a couvání oddálit například do 0,5 vteřiny.

Obrázek 14 – Správné řešení úkolu.

2.8.3 Úkol 🔯

Zadání: Zařiďte, aby robot ujel 30 cm, otočil se o 180° a dojel zpět na výchozí pozici.

Řešení: První krok řešení je stejný, jako v předchozím případě. Pro otočení o 180° je třeba pouze zdvojnásobit již dříve použité otočení o 90° a poté znovu dojet zpět.

2.9 Závěrečné ověření

Zadání: Naprogramujte robota tak, aby projel následující dráhu, a to podle zadaných pokynů o délce i rychlosti pohybu.

Řešení: Úkol kombinuje všechny dříve probírané typy pohybů a nastavení parametrů a ověřuje průběžně získané znalosti žáků.